3.227 \(\int \frac {1}{(a-a \sec ^2(c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=133 \[ \frac {\cot ^5(c+d x)}{6 a^3 d \sqrt {-a \tan ^2(c+d x)}}-\frac {\cot ^3(c+d x)}{4 a^3 d \sqrt {-a \tan ^2(c+d x)}}+\frac {\cot (c+d x)}{2 a^3 d \sqrt {-a \tan ^2(c+d x)}}+\frac {\tan (c+d x) \log (\sin (c+d x))}{a^3 d \sqrt {-a \tan ^2(c+d x)}} \]

[Out]

1/2*cot(d*x+c)/a^3/d/(-a*tan(d*x+c)^2)^(1/2)-1/4*cot(d*x+c)^3/a^3/d/(-a*tan(d*x+c)^2)^(1/2)+1/6*cot(d*x+c)^5/a
^3/d/(-a*tan(d*x+c)^2)^(1/2)+ln(sin(d*x+c))*tan(d*x+c)/a^3/d/(-a*tan(d*x+c)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {4121, 3658, 3473, 3475} \[ \frac {\cot ^5(c+d x)}{6 a^3 d \sqrt {-a \tan ^2(c+d x)}}-\frac {\cot ^3(c+d x)}{4 a^3 d \sqrt {-a \tan ^2(c+d x)}}+\frac {\cot (c+d x)}{2 a^3 d \sqrt {-a \tan ^2(c+d x)}}+\frac {\tan (c+d x) \log (\sin (c+d x))}{a^3 d \sqrt {-a \tan ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a - a*Sec[c + d*x]^2)^(-7/2),x]

[Out]

Cot[c + d*x]/(2*a^3*d*Sqrt[-(a*Tan[c + d*x]^2)]) - Cot[c + d*x]^3/(4*a^3*d*Sqrt[-(a*Tan[c + d*x]^2)]) + Cot[c
+ d*x]^5/(6*a^3*d*Sqrt[-(a*Tan[c + d*x]^2)]) + (Log[Sin[c + d*x]]*Tan[c + d*x])/(a^3*d*Sqrt[-(a*Tan[c + d*x]^2
)])

Rule 3473

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(b*Tan[c + d*x])^(n - 1))/(d*(n - 1)), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3658

Int[(u_.)*((b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Di
st[((b*ff^n)^IntPart[p]*(b*Tan[e + f*x]^n)^FracPart[p])/(Tan[e + f*x]/ff)^(n*FracPart[p]), Int[ActivateTrig[u]
*(Tan[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1] |
| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig
]])

Rule 4121

Int[(u_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(b*tan[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]

Rubi steps

\begin {align*} \int \frac {1}{\left (a-a \sec ^2(c+d x)\right )^{7/2}} \, dx &=\int \frac {1}{\left (-a \tan ^2(c+d x)\right )^{7/2}} \, dx\\ &=-\frac {\tan (c+d x) \int \cot ^7(c+d x) \, dx}{a^3 \sqrt {-a \tan ^2(c+d x)}}\\ &=\frac {\cot ^5(c+d x)}{6 a^3 d \sqrt {-a \tan ^2(c+d x)}}+\frac {\tan (c+d x) \int \cot ^5(c+d x) \, dx}{a^3 \sqrt {-a \tan ^2(c+d x)}}\\ &=-\frac {\cot ^3(c+d x)}{4 a^3 d \sqrt {-a \tan ^2(c+d x)}}+\frac {\cot ^5(c+d x)}{6 a^3 d \sqrt {-a \tan ^2(c+d x)}}-\frac {\tan (c+d x) \int \cot ^3(c+d x) \, dx}{a^3 \sqrt {-a \tan ^2(c+d x)}}\\ &=\frac {\cot (c+d x)}{2 a^3 d \sqrt {-a \tan ^2(c+d x)}}-\frac {\cot ^3(c+d x)}{4 a^3 d \sqrt {-a \tan ^2(c+d x)}}+\frac {\cot ^5(c+d x)}{6 a^3 d \sqrt {-a \tan ^2(c+d x)}}+\frac {\tan (c+d x) \int \cot (c+d x) \, dx}{a^3 \sqrt {-a \tan ^2(c+d x)}}\\ &=\frac {\cot (c+d x)}{2 a^3 d \sqrt {-a \tan ^2(c+d x)}}-\frac {\cot ^3(c+d x)}{4 a^3 d \sqrt {-a \tan ^2(c+d x)}}+\frac {\cot ^5(c+d x)}{6 a^3 d \sqrt {-a \tan ^2(c+d x)}}+\frac {\log (\sin (c+d x)) \tan (c+d x)}{a^3 d \sqrt {-a \tan ^2(c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.34, size = 79, normalized size = 0.59 \[ -\frac {\tan ^7(c+d x) \left (2 \cot ^6(c+d x)-3 \cot ^4(c+d x)+6 \cot ^2(c+d x)+12 \log (\tan (c+d x))+12 \log (\cos (c+d x))\right )}{12 d \left (-a \tan ^2(c+d x)\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a - a*Sec[c + d*x]^2)^(-7/2),x]

[Out]

-1/12*((6*Cot[c + d*x]^2 - 3*Cot[c + d*x]^4 + 2*Cot[c + d*x]^6 + 12*Log[Cos[c + d*x]] + 12*Log[Tan[c + d*x]])*
Tan[c + d*x]^7)/(d*(-(a*Tan[c + d*x]^2))^(7/2))

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 162, normalized size = 1.22 \[ \frac {{\left (18 \, \cos \left (d x + c\right )^{5} - 27 \, \cos \left (d x + c\right )^{3} - 12 \, {\left (\cos \left (d x + c\right )^{7} - 3 \, \cos \left (d x + c\right )^{5} + 3 \, \cos \left (d x + c\right )^{3} - \cos \left (d x + c\right )\right )} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) + 11 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right )^{2} - a}{\cos \left (d x + c\right )^{2}}}}{12 \, {\left (a^{4} d \cos \left (d x + c\right )^{6} - 3 \, a^{4} d \cos \left (d x + c\right )^{4} + 3 \, a^{4} d \cos \left (d x + c\right )^{2} - a^{4} d\right )} \sin \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-a*sec(d*x+c)^2)^(7/2),x, algorithm="fricas")

[Out]

1/12*(18*cos(d*x + c)^5 - 27*cos(d*x + c)^3 - 12*(cos(d*x + c)^7 - 3*cos(d*x + c)^5 + 3*cos(d*x + c)^3 - cos(d
*x + c))*log(1/2*sin(d*x + c)) + 11*cos(d*x + c))*sqrt((a*cos(d*x + c)^2 - a)/cos(d*x + c)^2)/((a^4*d*cos(d*x
+ c)^6 - 3*a^4*d*cos(d*x + c)^4 + 3*a^4*d*cos(d*x + c)^2 - a^4*d)*sin(d*x + c))

________________________________________________________________________________________

giac [B]  time = 1.70, size = 275, normalized size = 2.07 \[ -\frac {\frac {384 \, \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}{\sqrt {-a} a^{3} \mathrm {sgn}\left (-\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {192 \, \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )}{\sqrt {-a} a^{3} \mathrm {sgn}\left (-\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {352 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 87 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 12 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1}{\sqrt {-a} a^{3} \mathrm {sgn}\left (-\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6}} - \frac {a^{7} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 12 \, a^{7} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 87 \, a^{7} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{\sqrt {-a} a^{10} \mathrm {sgn}\left (-\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{384 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-a*sec(d*x+c)^2)^(7/2),x, algorithm="giac")

[Out]

-1/384*(384*log(tan(1/2*d*x + 1/2*c)^2 + 1)/(sqrt(-a)*a^3*sgn(-tan(1/2*d*x + 1/2*c)^3 + tan(1/2*d*x + 1/2*c)))
 - 192*log(tan(1/2*d*x + 1/2*c)^2)/(sqrt(-a)*a^3*sgn(-tan(1/2*d*x + 1/2*c)^3 + tan(1/2*d*x + 1/2*c))) + (352*t
an(1/2*d*x + 1/2*c)^6 - 87*tan(1/2*d*x + 1/2*c)^4 + 12*tan(1/2*d*x + 1/2*c)^2 - 1)/(sqrt(-a)*a^3*sgn(-tan(1/2*
d*x + 1/2*c)^3 + tan(1/2*d*x + 1/2*c))*tan(1/2*d*x + 1/2*c)^6) - (a^7*tan(1/2*d*x + 1/2*c)^6 - 12*a^7*tan(1/2*
d*x + 1/2*c)^4 + 87*a^7*tan(1/2*d*x + 1/2*c)^2)/(sqrt(-a)*a^10*sgn(-tan(1/2*d*x + 1/2*c)^3 + tan(1/2*d*x + 1/2
*c))))/d

________________________________________________________________________________________

maple [B]  time = 1.83, size = 265, normalized size = 1.99 \[ -\frac {\left (48 \left (\cos ^{6}\left (d x +c \right )\right ) \ln \left (\frac {2}{1+\cos \left (d x +c \right )}\right )-48 \ln \left (-\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \left (\cos ^{6}\left (d x +c \right )\right )+25 \left (\cos ^{6}\left (d x +c \right )\right )-144 \ln \left (\frac {2}{1+\cos \left (d x +c \right )}\right ) \left (\cos ^{4}\left (d x +c \right )\right )+144 \left (\cos ^{4}\left (d x +c \right )\right ) \ln \left (-\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-3 \left (\cos ^{4}\left (d x +c \right )\right )+144 \ln \left (\frac {2}{1+\cos \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right )-144 \left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (-\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-33 \left (\cos ^{2}\left (d x +c \right )\right )-48 \ln \left (\frac {2}{1+\cos \left (d x +c \right )}\right )+48 \ln \left (-\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )+19\right ) \sin \left (d x +c \right )}{48 d \left (-\frac {a \left (\sin ^{2}\left (d x +c \right )\right )}{\cos \left (d x +c \right )^{2}}\right )^{\frac {7}{2}} \cos \left (d x +c \right )^{7}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a-a*sec(d*x+c)^2)^(7/2),x)

[Out]

-1/48/d*(48*cos(d*x+c)^6*ln(2/(1+cos(d*x+c)))-48*ln(-(-1+cos(d*x+c))/sin(d*x+c))*cos(d*x+c)^6+25*cos(d*x+c)^6-
144*ln(2/(1+cos(d*x+c)))*cos(d*x+c)^4+144*cos(d*x+c)^4*ln(-(-1+cos(d*x+c))/sin(d*x+c))-3*cos(d*x+c)^4+144*ln(2
/(1+cos(d*x+c)))*cos(d*x+c)^2-144*cos(d*x+c)^2*ln(-(-1+cos(d*x+c))/sin(d*x+c))-33*cos(d*x+c)^2-48*ln(2/(1+cos(
d*x+c)))+48*ln(-(-1+cos(d*x+c))/sin(d*x+c))+19)*sin(d*x+c)/(-a*sin(d*x+c)^2/cos(d*x+c)^2)^(7/2)/cos(d*x+c)^7

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 94, normalized size = 0.71 \[ -\frac {\frac {6 \, \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{\sqrt {-a} a^{3}} - \frac {12 \, \log \left (\tan \left (d x + c\right )\right )}{\sqrt {-a} a^{3}} + \frac {6 \, \sqrt {-a} \tan \left (d x + c\right )^{4} - 3 \, \sqrt {-a} \tan \left (d x + c\right )^{2} + 2 \, \sqrt {-a}}{a^{4} \tan \left (d x + c\right )^{6}}}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-a*sec(d*x+c)^2)^(7/2),x, algorithm="maxima")

[Out]

-1/12*(6*log(tan(d*x + c)^2 + 1)/(sqrt(-a)*a^3) - 12*log(tan(d*x + c))/(sqrt(-a)*a^3) + (6*sqrt(-a)*tan(d*x +
c)^4 - 3*sqrt(-a)*tan(d*x + c)^2 + 2*sqrt(-a))/(a^4*tan(d*x + c)^6))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (a-\frac {a}{{\cos \left (c+d\,x\right )}^2}\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a - a/cos(c + d*x)^2)^(7/2),x)

[Out]

int(1/(a - a/cos(c + d*x)^2)^(7/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (- a \sec ^{2}{\left (c + d x \right )} + a\right )^{\frac {7}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-a*sec(d*x+c)**2)**(7/2),x)

[Out]

Integral((-a*sec(c + d*x)**2 + a)**(-7/2), x)

________________________________________________________________________________________